If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+n-1600=0
a = 1; b = 1; c = -1600;
Δ = b2-4ac
Δ = 12-4·1·(-1600)
Δ = 6401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{6401}}{2*1}=\frac{-1-\sqrt{6401}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{6401}}{2*1}=\frac{-1+\sqrt{6401}}{2} $
| 16x+3+4x+7=150 | | (2.8x10^8)=(5.4x10^9) | | x+5/2=2(x+) | | 5(w+1)-w=-3(w-1)+7 | | -10x–70=10 | | x+38=41 | | X+y=909 | | y+.2695y=32,843 | | -2.5=5(x+8)-10 | | -3(x-1)+9=2x-23 | | -3+5z=3z-7 | | 19x-12=19x=12 | | -18+90=-20(1+2x) | | 4(3x4)+10=68 | | 3/x^2-25+1/x+5=8/x-5 | | 3w^2+13w–16=0 | | 5+5x=260 | | -10(x+4)=-40 | | x+29=39 | | 19x–12=19x+12 | | 1/4(12x-8)=3/4 | | 1/4(8x-8)=3/4 | | 1/4(11x-8)=3/4 | | x-17=632 | | 4x–1=10 | | 3(15x-9)=12 | | -101=n-66 | | -98=n-42 | | -3(x-5)=-3 | | -8+x/5=3 | | 4(x−5)=20 | | 11x-6+4x+6=90 |